AUTOMORPHISMS OF POLYNOMIAL IND POWER SERIES RINGS

Pekka NOUSIAINEN
Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA

Moss E. SWEEDLER*
5epsrtment of Mathematics, Cornell University, Ithaca, NY 14853, USA

Communicated by H. Bass
Received 8 November 1982

1980 . 4 MS(MOS)SCN: Primary 13B10; Secondary 13F20, 13 F25.
Key words and phrases: Jacobian matrix, Jacobian conjecture, Inversion formula, Locally nilpotent derivation, Locally finite derivation.

1. Introduction

Our main results are inversion formulas for automorphisms of a power series ring $(2.1,2.5)$ and a characterization of automorphisms of a polynomial ring in characteristic zero (3.3). We use:
1.1. Notations. k is a commutative ring and $X=\left(X_{1}, \ldots, X_{n}\right)$ is a set of indeterminates, $k[X]=k\left[X_{1}, \ldots, X_{n}\right]$ and $k[[X]]=k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ are the polynomial and power series rings over k.

A k-algebra endomorphism φ of $k[X]$ is given by $X_{i} \rightarrow f_{i}(1 \leq i \leq n)$ for some set of n polynomials $f=\left(f_{1}, \ldots, f_{n}\right)$ in $k[X]$. If $\tau \in A u t_{k} k[X]$ is the translation defined by $X_{i} \rightarrow X_{i}-f_{i}(0)(1 \leq i \leq n)$, then $\varphi \tau$ is defined by $X_{i} \rightarrow f_{i}-f_{i}(0)(1 \leq i \leq n)$. Hence there is no essential loss of generality in assuming that φ preserves the origin, i.e., that f_{1}, \ldots, f_{n} have no constant terms. In the case of power series, a k-algebra endomorphism φ of $k[[X]]$ is given by $X_{i} \rightarrow f_{i}(1 \leq i \leq n)$ for some set of n power series $f=\left(f_{1}, \ldots, f_{n}\right)$ in $k[[X]]$ with no constant terms. Hence, if φ is an endomorphism of $k[X]$ preserving the origin then φ is also an endomorphism of $k[[X]]$.
1.2. Definition. Let $\varphi \in \operatorname{End}_{k} k[X]$ (resp. $\varphi \in \operatorname{End}_{k} k[[X]]$) be an endomorphism given by $X_{i} \rightarrow f_{i}(\mathrm{i} \leq i \leq n)$. Then the Jacobian of φ is the $n \times n$ matrix

[^0]$$
\operatorname{Jac}(\varphi)=\operatorname{Jac}(f)=\left(\partial f_{j} / \partial X_{i}\right)
$$
over $k[X]$ (resp. over $k[[X]]$).

A simple computation gives:
1.3. Lemma. (i) Let 1 denote the identity map of $k[X]$ (resp. of $k[[X]]$). Then $\operatorname{Jac}(1)=I$.
(ii) If φ and ψ are two endomorphisms of $k[X]$ (resp. of $k[[X]])$, then $\operatorname{Jac}(\varphi \psi)=$ $\operatorname{Jac}(\varphi) \operatorname{Jac}(\psi)^{\varphi}$, where $\operatorname{Jac}(\psi)^{\varphi}$ denotes φ applied entrywise to $\operatorname{Jac}(\psi)$.

By 1.3 , if φ is invertible, then so is $\operatorname{Jac}(\varphi)$. The converse is not true in general. A long-standing open problem is:
1.4. Jacobian Conjecture. If k contains the field \mathbf{Q} of rational numbers and φ is an endomorphism of $k[X]$ with $\operatorname{Jac}(\varphi)$ invertible, then φ is an automorphism of $k[X]$.

In 3.3 we give necessary and sufficient conditions under whish 1.4 is true. These conditions are expressed in terms of certain derivations d_{1}, \ldots, d_{n} of $k[X]$ introduced in the next section (2.3). We refer to [1] for a survey of the Jacobian Conjecture.

2. The inversion formula

We use the notations 1.1. Given a multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of non-negative integers, define

$$
(\partial / \partial X)^{(\alpha)}=\frac{1}{\alpha!}(\partial / \partial X)^{\alpha}=\frac{1}{\alpha_{1}!\cdots \alpha_{n}!}\left(\partial / \partial X_{1}\right)^{\alpha_{1}} \cdots\left(\partial / \partial X_{n}\right)^{\alpha_{n}} .
$$

As an operator, $(1 / j!)\left(\partial / \partial X_{i}\right)^{j}$ is defined by

$$
\frac{1}{j!}\left(\partial / \partial X_{i}\right)^{j}\left(X_{1}^{m_{1}} \cdots X_{n}^{m_{n}}\right)=\binom{m_{i}}{j} X_{1}^{m_{1}} \cdots X_{i-1}^{m_{1}}{ }^{\prime} X_{i}^{m_{i}} X_{i+1}^{m_{1}+1} \cdots X_{n}^{m_{n}}
$$

Hence this makes sense over any commutative ring k. The $(\partial / \partial X)^{(\alpha)}$ are higher derivations of $k[X]$ (resp. of $\left.k_{[}^{\lceil }[X]\right]$), i.e., they satisfy the rule

$$
(\partial / \partial X)^{(\alpha)}(u v)=\sum_{\beta+y=c}(\partial / \partial X)^{(\beta)}(u)(\partial / \partial X)^{(\gamma)}(v) .
$$

This is essentially the familiar Leibniz rule from Calculus.
2.1. Inversion Formula. Let φ be an automorihism of $k[[X]]$ given by $X_{i} \rightarrow f_{i}$ $(1 \leq i \leq n)$. If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a multi-index of non-negative integers, define $d^{(\text {(n) }}=\varphi(\partial / \partial X)^{(\alpha)} \varphi^{-1}$. Then φ^{-1} is given by

$$
\begin{equation*}
\left.\varphi^{-1}(u)=\sum_{\alpha}(X-f)^{\alpha} G^{\left(\alpha_{1}\right.} u\right) \tag{2.2}
\end{equation*}
$$

where $(X-f)^{\alpha}=\left(X_{1}-f_{1}\right)^{\alpha_{1}} \cdots\left(X_{n}-j_{n}\right)^{\alpha_{n}}$.

Proof. Dcfine $\psi(u)$ to be the right-hand side of (2.2). Then ψ is a well-defined k-linear map $k[[X]] \rightarrow k[[X]]$. Since the $(\partial / \partial X)^{(\alpha)}$ are higher derivations of $k[[X]]$, so are the $d^{(\alpha)}$. This implies that ψ is a k-algebra endomorphism of $k[[X]]$. For $1 \leq i \leq n$ we have

$$
\psi \varphi\left(X_{i}\right)=\sum_{a}(X-f)^{\alpha} \varphi(\partial / \partial X)^{(\alpha)}\left(X_{i}\right)=f_{i}+\left(X_{i}-f_{i}\right)=X_{i} .
$$

Hence $\psi \varphi=1$.

Now suppose that φ is an endomorphism of $k[X]$ (resp. of $k[[X]])$ with $\operatorname{Jac}(\varphi)$ invertible. We define derivations d_{1}, \ldots, d_{n} of $k[X]$ (resp. of $k[[X]]$) by the matrix equation

$$
\left(\begin{array}{c}
d_{1} \tag{2.3}\\
\vdots \\
d_{n}
\end{array}\right)=\operatorname{Jac}(\varphi)^{-1}\left(\begin{array}{c}
\partial / \partial X_{1} \\
\vdots \\
\partial / \partial X_{n}
\end{array}\right)
$$

2.4. Proposition. (i) d_{1}, \ldots, d_{n} are uniquely characterized by the property that d_{i} is equal to $\partial / \partial f_{i}$ on $k[f]$ (resp. on $\left.k[[f]]\right)$ for $1 \leq i \leq n$.
(ii) d_{1}, \ldots, d_{n} commute.
(iii) If φ is an automorphism, then $d_{i}=\varphi\left(\partial / \partial X_{i}\right) \varphi^{-1}$.

Proof. As a module, the set of derivations of $k[X]$ (resp. of $k[[X]]$) is generated by $\partial / \partial X_{1}, \ldots, \partial / \partial X_{n}$. Since $\operatorname{Jac}(\varphi)$ is invertible, it is also generated by d_{1}, \ldots, d_{n}. It is clear from the definition that $d_{i} f_{j}=\delta_{i j}$. Hence d_{i} restricts to $\partial / \partial f_{i}$. If d is a derivation such that $d f_{1}=\cdots=d f_{n}=0$, then writing $d:=\sum a_{i} d_{i}$ we see that $d=0$. We use this to prove the remaining claims. If d_{i}, d_{i}^{\prime} both restrict to $\partial / \partial f_{i}$ then $d=d_{i}-d_{i}^{\prime}=0$. Given i and j, the commutator $d=\left[d_{i}, d_{j}\right]=d_{i} d_{j}-d_{j} d_{i}=0$. Finally, if φ is an automorphism then $d=d_{i}-\varphi\left(\partial / \partial X_{i}\right) \varphi^{-1}=0$.

We conclude this section with:
2.5. Characteristic Zero Inversion Theorem. Assume that k contains the fiela \mathbf{Q} of rational numbers. Let $\dot{\varphi}$ be an endomorphism of $k[[X]]$ with $\operatorname{Jac}(\varphi)$ invertible. Then φ is an automorphism of $k[[X]]$ and φ^{-1} is given by the formula (2.2), where

$$
d^{(\alpha)}=\varphi(\partial / \partial X)^{(\alpha)} \varphi^{-1}=\frac{1}{\alpha!} d^{\alpha}=\frac{1}{\alpha_{1}!\cdots \alpha_{n}!} d_{1}^{\alpha_{1}} \cdots d_{n}^{\alpha_{n}} .
$$

Proof. Let $d^{(\alpha)}=(1 / \alpha!) d^{\alpha}$. Then the $d^{(\alpha)}$ are higher derivations of $k[[X]]$. Define
$\psi(u)$ to be the right-hand side of (2.2). Then ψ is an endomorphism of $k[[X]]$, and using 2.4(i), (ii) we see that $\psi \varphi=1$. In order to show that $\varphi \psi=1$ it suffices to show that $\varphi \psi \equiv 1 \bmod ((X))^{m}$ for $m \geq 0$, where $((X))$ is the ideal generated by X_{1}, \ldots, X_{n}. This is clear since $\psi \varphi \equiv 1 \bmod ((X))^{m}$ and $k[[X]] /((X))^{m}$ is a finitely generated free k-module. Finally, $d^{(\alpha)}=\varphi(\partial / \partial X)^{(\alpha)} \varphi^{-1}$ by 2.4 (iii).

3. Local nilpotence and local finiteness

This section contains a criterion for the invertibility of an endomorphism φ of $k[X]$ in characteristic zero.
3.1. Definition. Let k be a commutative ring and let d be a derivation of $k[X]$. Then $\operatorname{Ker}(d)$, $\operatorname{Nil}(d), \operatorname{Fin}(d) \subseteq k[X]$ and defined by
(i) $z \in \operatorname{Ker}(d)$ iff $d(z)=0$.
(ii) $z \in \operatorname{Nil}(d)$ iff there is an integer $m \geq 0$ such that $d^{m}(z)=0$.
(iii) $z \in \operatorname{Fin}(d)$ iff there is a finitely generated k-module $M \subseteq k[X]$ such that $z \in M$ and M is d-invariant (i.e., $d M \subseteq M$).

We say that d is locally nilpotent if $\operatorname{Nil}(d)=k[X]$ and locally finite if $\operatorname{Fin}(d)=$ $k[X]$.

3.2. Lemma. $\operatorname{Ker}(d) \subseteq \operatorname{Nil}(d) \subseteq \operatorname{Fin}(d)$ are subalgebras of $k[X]$.

Proof. The inclusions are obvious. The formula

$$
d^{m}\left(z_{1} z_{2}\right)=\sum_{1,1=m}\binom{m}{i} d^{i}\left(z_{1}\right) d^{j}\left(z_{2}\right)
$$

implies that $\operatorname{Ker}(d)$ and $\operatorname{Nil}(d)$ are subalgebras. If M_{1}, M_{2} are finitely generated and d-invariant, then so are $M_{1}+M_{2}$ and $M_{1} M_{2}=\left\{\sum a z_{1} z_{2} \mid a \in k_{1} z_{1} \in M_{1}, z_{2} \in M_{2}\right\}$. Hence $\operatorname{Fin}(d)$ is a subalgebra.
3.3. Theorem. Suppose that k contains the field \mathbf{Q} of rational numbers, and let φ be an endomorphism of $k[X]$ with $\operatorname{Jac}(\varphi)$ invertible. Define derivations d_{1}, \ldots, d_{n} of $k[X]$ by (2.3). Then the following are equivalent:
(i) φ is invertible.
(ii) d_{1}, \ldots, d_{n} are locally nilpotent.
(iii) d_{1}, \ldots, d_{n} are locally finite.

Proof. Replacing φ by $\varphi \tau$ for a suitable translation $\tau \in \mathrm{Aut}_{k} k[X]$ we can assume that φ preserves the origin. By 2.5, φ is an automorphism of $k[[X]]$. If $\varphi \in \mathrm{Aut}_{k} k[\mathrm{X}]$ then $d_{i}^{m}=\circ\left(\partial / \partial X_{i}\right)^{m} \varphi^{-1}\left(2.4\right.$ (iii)) shows that d_{i} is locally nilpotent. Conversely, if the d_{i} are locally nilpotent then φ^{-1} takes $k[X]$ to $k[X]$ by (2.2). Hence (i) and (ii) are equ ivalent.
it is clear that (ii) implies (iii). The rest of this section is devoted to the proof of the converse. Assume (iii). By 3.2, a derivation d is locally finite if $X_{1}, \ldots, X_{n} \in$ Fin(d). Using this it is easy to reduce to the case where k is a finitely generated Q-algebra. Let k have nilradical N, and write $k / N=k_{1} \times \cdots \times k_{r}$ where the k_{i} are domains. Then for each $i, \operatorname{Jac}(\varphi)$ is invertible over k_{i} and d_{1}, \ldots, d_{n} are locally finite over $\boldsymbol{k}_{\boldsymbol{i}}$.

3.4. Lemma. If φ is invertible over each k_{i}, then φ is invertible over k.

Proof. If $k_{i}[f]=k_{i}[X]$ for each i, then $N(k[X] / k[f])=k[X] / k[f]$. Since N is nilpotent, $k[X]=k[f]$.

Hence we can assume that k is a domain. By enlarging k we can further reduce to the case where k is an algebraically closed field of characteristic 0.
3.5. Lemma. Let k be a field of characteristic 0 . If d is a derivation of $k[X]$, $z \in k[X]$, and $d z=\lambda z$ for some $0 \neq \lambda \in \operatorname{Ker}(d)$ then z is transcendental over $\operatorname{Nil}(d)$.

Proof. Assume the contrary. Let $a \cdot z^{r}+\cdots+a_{0}=0$ be an algebraic equation with $a_{r}, \ldots, a_{0} \in \operatorname{Nil}(d)$ and r minimal. Applying d to this equation gives

$$
\left(d a_{r}+r \lambda a_{r}\right) z^{r}+\cdots+\left(d a_{1}+\lambda a_{1}\right) z+d a_{0}=0 .
$$

Since $a_{0} \in \operatorname{Nil}(d)$, applying d repeatedly we can assume that $a_{0} \neq 0, d a_{0}=0$. Then also $d a_{i}+i \lambda a_{i}=0$ by the minimality of r. Since $a_{r} \in \operatorname{Nil}(d)$, there is m such that $0=d^{m} a_{r}=(-1)^{m} r^{m} \lambda^{m} a_{r}$, a contradiction.

We now complete the proof of 3.3 by showing that d_{1}, \ldots, d_{n} are locally nilpotent. Let $d=d_{i}$. Suppose M is a finite-dimensional k-vector space such that $d M \subseteq M$. By linear algebra, in order to show that the linear map $d \mid M$ on M is nilpotent, it suffices to show that the eigenvalues of $d \mid M$ are zero. Suppose $z \in M$ is an eigenvector of $d \mid M$, say $d z=\lambda z$ where $\lambda \in k$. Since $k[X]$ is algebraic over $k[f]$ and $k[f] \varsigma \operatorname{Nil}(d), z$ is algebraic over $\operatorname{Nil}(d)$. Then by (3.5), $\lambda=0$.

The equivalence of (i) and (ii) in 3.3 also follows directly from the following fact: If d is a derivation in characteristic zero and $d(z)=1$, then $\operatorname{Nil}(d)=\operatorname{Ker}(d)[z]$. This fact has been noted by several people, see e.g. [2] and [3].

References

[1] H. Bass, E.H. Comell and D. Wright. The Jacobian Conjecture: Reduction of degree and formal expansion of the ir:verse, Bull. Amer. Math. Soc. 7 (1982) 287-330.
[2] ivi. Razar, Polyncmial maps with constant Jacobian, Israel j. Math. 32 (1979) 97-106.
[3] D. Wright, On the Jacobian Conjecture, Illinois J. Math. 25 (1981) 423-440.

[^0]: *Supported by the Jenn Simon Guggenheim Memorial Foundation.

