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1. Introduction 

Our main results are inversion formulas for automorphisms of a power series ring 
(2.L2.5) and a characterization of automorphisms of a polynomial ring in charac- 
teristic zero (3.3). We use: 

1.1. Notations. k is a commutative ring and X = (X, , . . . , X,,) is a set of 
indeterminates, k[X] = k[X1, . . . , X,,] and k[ [Xl] = k[ [X1, . . l , X,,]] are the poly- 
nomial and power series rings over k. 

A k-algebra endomorphism (p of k[X] is given by Xi ‘fi (1 I is n) for some set 
of n polynomials f = (f,, . . . ,f,) in k[X]. If T E Autk k[X] is the translation defined 
by Xi-+X,-h(O) (kkn), then cp~ is defined by Xi-h-J(O) (ld~n). Hence 
there is no essential loss of generality in assuming that cp preserves the origin, i.e., 
that j’,, . . . , f,, have no constant terms. In the case of power series, a k-algebra 
endomorphism (p of k[[X]] is given by X, --$ (1 s is n) for some set of n power 
series f = (fi, . . . , f,,) in k[[X]] with no constant terms. Hence, if q is an endo- 
morphism of k[X] preserving the origin then 91 is also an endomorphism of k[[X]]. 

1.2. Definition. Let q E Endk k[X] (resp. cp E Endk k[[X]]) be an endomorphism 
given by Xi-$ (I lion). Then the Jacobian of (p is the n x n matrix 
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Jac((p) = Jac( f) = (ah/iIXi) 

over k[X] (resp. over k[[X]J). 

A simple computation gives: 

1.3. Lemma. (i) Let 1 denote the identity map of k[X] (resp. of k[[X]]). Then 
Jac(l)=I. 

(ii) Zf q and w are two endomorpllisms of k[X] (resp. of k[[X]]), then Jac(cp y) = 
Jac(&Jac(v)V, where Jac&#’ denotes cp applied entrywise to Jac(ly). U 

By I .3, if cp is invertible, then so is Jac(&. The converse is not true in general. 
A long-standing open problem is: 

1.4. Jacobian Conjecture. If k contains the field Q of rational numbers and 9 is 
an endomorphism of k[X] with Jac(q) invertible, then (p is an automornhism of 
k(X]. :1 

In 3.3 we give necessary and sufficient conditions under whi?h 1.4 is true. These 
conditions are expressed in terms of certain derivations 
duced in the next section (2.3). We refer to [l] for a 
Conjecture. 

4 , . . . , d, of k[X] intro- 
survey of the Jacobian 

2. The isversion formula 

We use the notations 1.1. Given a multi-index a = (q, . . . , (xJ of non-negative 
integers, define 

(waxp = ;! (a/ax)” = 1 
l-q! l ‘* a,,! 

(a/ax,)a’ ‘-’ (a/ax,,)“? 

As an operator, (1 I” !)(a/aX# is defined by 

Hence this makes sense over any commutative ring k. The (U3X)(a) are higher 
derivutions of k[X] (resp. of k&Y]]), i.e., they satisfy the rule 

(a/ax)‘qrru) = c (a/ax)‘p,(,)(a/ax)‘y’(v). 
p+y=C’ 

This is essentially the familiar Leibniz rule from Calculus. 

2.1. Inversion Formula. Let q~ be an automori*hism of k[[X]] given by Xi +A 
(ISi5n). ff cx=(cu,, . . . , CY, ) is a multi-index of non-negative integers, define 
d”“‘= (p(W?X)(“‘(p-‘. Then q~-’ is given by 



AutomorpGms of polynomial and power series rings 95 

(2.2) 

where (X-f)” = (X, - f,)a’ .** (X, -J*,)*n. 

Proof. Define v(u) to be the right-hand side of (2.2). Then ry is a well-defined 
k-linear map k[[X] ] +k[ [Xl]. Since the (?VaX)@) are higher derivations of k[ [Xl], 
so are the d (*I. This implies that w is a k-algebra endomorphism of k&U]]. For 
l&92 we have 

u/&Xi) == C (X-f )"cp(a/aX)("'(Xi) =A + (Xi -Cr;:) = xi* 
a 

Hence QV~=I. Cl 

Now suppose that (p is an endomorphism of k[X] (resp. of k[[X]]) with Jac(p) 
invertible. We define derivations d,, . . . , d, of k[X] (resp. of k[[X]]) by the matrix 
equation 

(?) = Jac(&(;~). (2.3) 

2.4. Proposition. (i) di, . . . , d, are uniquely characterized by the property that di is 
equal to a/af;: on k[f ] (resp. on k[[ f I]) for 15 is n. 

(ii) dl, . . . , d,, commute. 
(iii) If (p is an automorphism, then di= (P(a/a&)@‘. 

Proof. As a module, the set of derivations of k[X] (resp. of k[[X]]) is generated 
by a/ax,,... , a/ax,, . Since Jac(& is invertible, it is also generated by dl, . . . , d,,*. It 
is clear from the definition that djfj = 6,. Hence d,; restricts to W3fi. If d is a 
derivation such that dfi = l = dfi, = 0, then writing d := C aidi we see that d = 0. We 
use this to prove the remaining claims. If dig d; both restrict to a/af;: then 
d = di - d,!= 0. Given i and j, the commutator cl = [(ii, CC] = didi - djdi = 0. Finally, if 
p is an automorphism then d= di - (p(WaX&-’ =O. 0 

We conclude this section with: 

2.5. Characteristic Zero Inversion Theorem. Assume that k contains the fieia’ Q of 
rational numbers. Let i be an endomorphism of k[[X]] with Jac((p) invertible. Then 
cp is an automorphism of k[[X]] and cp-l is given by the formula (2.2), where 

roof. Let d@) = (l/a!)d? Then the d@) are higher derivations of k[[X]]. Define 
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u/(u) to be the right-hand side of (2.2). ‘Then w is an endomorphism of k[[X]), and 
using 2.4(i), (ii) we see that lyp = 1. In order to show that cpw= 1 it suffices to show 
that q~t,~ = 1 mod ((X))“’ for m L 0, where ((X)) is the ideal generated by X,, . . . , &. 

This is -clear since wq= 1 mod ((X))” and k[[X]]/((X))” is a finitely generated free 
k-module. Finally, dta) = B(a/~X)(aJcp-* by 2.4(iii). Cl 

3. Local nilpatence and local finiteness 

This section contains a criterion for the invertibility of an endomorphism ~7 of 
k[X] in characteristic zero. 

3.1. Definition. Let k be a commutative ring and let d be a derivation of k[X). 
Then Ker(d), Nil(d), Fin(d) c k[X] and defined by 

(i) z~Ker(d) iff d(z)=O. 
(ii) z E Nil(d) iff there is an integer m >O such that d”‘(z) = 0. 

(iii) z E Fin(d) iff there is a finitely generated k-module MC_ k[XJ such that ZE M 
and it! is d-invariant (i.e., dMc M). 

We say that d is locally nilpotent if Nil(d) = k[X] and focal/j *finite if Fin(d) = 
k[X]. 

3.2. Lemma. Ker(d) c Nil(d) c Fin(d) are subalgebras of k[X]. 

Proof. The inclusions are obvious. The formula 

,“‘(qz;1) = c 
1 - J -= m 

implies that Ker(d) and Nil(d) are subalgebras. If Ml, Mz are finitely generated 
and d-invariant, then so are MI + M, and M, n/l.! = ( C uq z2 1 a E k, q EM,, q E M2). 
Hence Fin(d) is a subalgebra. E1 

3.3. Theorem. Suppose that k contains the field Q of rutional numbers, and let V, 
be un endonrorphism qf k[X] with .lac(@ invertible. &fine derivations dl, l l . , d,, 
qf k[.U] by (2.3). Tilen & following are equivalent: 

(i) cp is iu vertib/e. 
(ii) d,, . . . , d,, are ioca!/j nilpotent. 

(iiii) (I 1. . . . , dir, are ioca![v finite. 

Proof. Replacing q by q T for a suitable translation T E Autk k[X] we can assume 
that cp preserves the origin. By 2.5, (p is an automorphism of k[[X]]. If 
cp E Aut, k[.U] then dy = I~(&%%‘,)“‘cp ’ (2.4(iii)) shows that di is locally nilpotent. 
C’onversciy, if the cil are locally nilpotent then q-l takes k[X] to k[X] by (2.2). 

Hence (i) md (ii) are eql ivalent. 
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It is clear that (ii) implies (iii). The rest of this section is devoted to the proof of 
the converse. Assume (iii). By 3.2, a i:srrvation d ii locally finite if XI, . . . , Xn E 

Fin(d). Using this it is easy to reduce to the case where k is a finitely generated 
Q-algebra. Let k have nilradical N, and write k/N== kl x l x kr where the ki are 
domains. Then for each i, Jac(@ is invertible over kj and d,, . . . 9 d, are locally finite 
over ki. 

3.4. Lemma. If (p is invertible over each ki, then (p is invertible over k. 

Proof. If ki[f] = ki[X] for each i, then N(k[X)/k[f]) = k[X]/k[f]. Since IV is 

nilpotent, k[X] = k[f]. 

Hence we can assume that k is a domain. By enlarging k we can further reduce 
to the case where k is an algebraically closed field of characteristic 0. 

3.5. Lemma. Let k be a field of characteristic 0. If d is a derivation of k[X], 
z E klX), and dz = AZ for some O#A E Ker(d) then z is transcendental over Nil(d). 

Proof. Assume the contrary. Let a-z’+ l == + ao= 0 be an algebraic equation with 
a r, . . . , a0 E Nil(d) and r minimal. Applying d to this equation gives 

(da, -I- t-la&’ + l +(da, +Aa&+dao=O. 

Since a0 E Nil(d), applying d repeatedly we can assume that a0 z 0, da0 = 0. Then 
also da, + iAa, = 0 by the minimalit y of r. Since a, E Nil(d), there is 111 such that 
0 = d”‘cl, = ( - 1 )‘??I “‘a,, a contradict ion. 

We now complete the proof of 3.3 by showing that dl , . . . , d, are locally nil- 
potent. Let d = di. Suppose M is a finite-dimensional k-vector space such that 
dA4c M. By linear algebra, in order to show that the linear map d 1 A4 on A4 is nil- 
potent, it suffices to show that the eigenvalues of d ( M are zero. Suppose z E M is 
an eigenvector of d 1 M, say dz = AZ where A E k. Since k[X] is algebraic over klf] 
and k[S] c Nil(d), z is algebraic over Nil(d). Then by (3.5), A = 0. 9 

The equivalence of (i) and (ii) in 3.3 also follows directly from the following fact: 
If d is a derivation in characteristic zero and d(z) = I, then Nil(d) = Ker(d)[z). This 
fact has been noted by several people, see e.g. [2] and (31. 
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