AUTOMORPHISMS OF POLYNOMIAL AND POWER SERIES RINGS

Pekka NOUSIAINEN

Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA

Moss E. SWEEDLER*

Department of Mathematics, Cornell University, Ithaca, NY 14853, USA

Communicated by H. Bass Received 8 November 1982

1980 AMS(MOS)SCN: Primary 13B10; Secondary 13F20, 13F25.

Key words and phrases: Jacobian matrix, Jacobian conjecture, Inversion formula, Locally nilpotent derivation, Locally finite derivation.

1. Introduction

Our main results are inversion formulas for automorphisms of a power series ring (2.1, 2.5) and a characterization of automorphisms of a polynomial ring in characteristic zero (3.3). We use:

1.1. Notations. k is a commutative ring and $X = (X_1, ..., X_n)$ is a set of indeterminates, $k[X] = k[X_1, ..., X_n]$ and $k[[X]] = k[[X_1, ..., X_n]]$ are the polynomial and power series rings over k.

A k-algebra endomorphism φ of k[X] is given by $X_i \rightarrow f_i$ $(1 \le i \le n)$ for some set of *n* polynomials $f = (f_1, ..., f_n)$ in k[X]. If $\tau \in \operatorname{Aut}_k k[X]$ is the translation defined by $X_i \rightarrow X_i - f_i(0)$ $(1 \le i \le n)$, then $\varphi \tau$ is defined by $X_i \rightarrow f_i - f_i(0)$ $(1 \le i \le n)$. Hence there is no essential loss of generality in assuming that φ preserves the origin, i.e., that $f_1, ..., f_n$ have no constant terms. In the case of power series, a k-algebra endomorphism φ of k[[X]] is given by $X_i \rightarrow f_i$ $(1 \le i \le n)$ for some set of *n* power series $f = (f_1, ..., f_n)$ in k[[X]] with no constant terms. Hence, if φ is an endomorphism of k[X] preserving the origin then φ is also an endomorphism of k[[X]].

1.2. Definition. Let $\varphi \in \operatorname{End}_k k[X]$ (resp. $\varphi \in \operatorname{End}_k k[[X]]$) be an endomorphism given by $X_i \rightarrow f_i$ ($i \le i \le n$). Then the *Jacobian* of φ is the $n \times n$ matrix

*Supported by the John Simon Guggenheim Memorial Foundation.

0022-4049/83/\$3.00 © 1983, Elsevier Science Publishers B.V. (North-Holland)

$$\operatorname{Jac}(\varphi) = \operatorname{Jac}(f) = (\partial f_i / \partial X_i)$$

over k[X] (resp. over k[[X]]).

A simple computation gives:

1.3. Lemma. (i) Let 1 denote the identity map of k[X] (resp. of k[[X]]). Then Jac(1) = I.

(ii) If φ and ψ are two endomorphisms of k[X] (resp. of k[[X]]), then $Jac(\varphi \psi) = Jac(\varphi)Jac(\psi)^{\varphi}$, where $Jac(\psi)^{\varphi}$ denotes φ applied entrywise to $Jac(\psi)$. \Box

By 1.3, if φ is invertible, then so is Jac(φ). The converse is not true in general. A long-standing open problem is:

1.4. Jacobian Conjecture. If k contains the field **Q** of rational numbers and φ is an endomorphism of k[X] with $Jac(\varphi)$ invertible, then φ is an automorphism of k[X]. \Box

In 3.3 we give necessary and sufficient conditions under which 1.4 is true. These conditions are expressed in terms of certain derivations d_1, \ldots, d_n of k[X] introduced in the next section (2.3). We refer to [1] for a survey of the Jacobian Conjecture.

2. The inversion formula

We use the notations 1.1. Given a multi-index $\alpha = (\alpha_1, ..., \alpha_n)$ of non-negative integers, define

$$(\partial/\partial X)^{(\alpha)} = \frac{1}{\alpha!} (\partial/\partial X)^{\alpha} = \frac{1}{\alpha_1! \cdots \alpha_n!} (\partial/\partial X_1)^{\alpha_1} \cdots (\partial/\partial X_n)^{\alpha_n}.$$

As an operator, $(1/j!)(\partial/\partial X_i)^j$ is defined by

$$\frac{1}{j!} (\partial/\partial X_i)^j (X_1^{m_1} \cdots X_n^{m_n}) = {m_i \choose j} X_1^{m_1} \cdots X_{i-1}^{m_{i-1}} X_i^{m_{i-1}} X_{i+1}^{m_{i+1}} \cdots X_n^{m_n}.$$

Hence this makes sense over any commutative ring k. The $(\partial/\partial X)^{(\alpha)}$ are higher derivations of k[X] (resp. of k[[X]]), i.e., they satisfy the rule

$$(\partial/\partial X)^{(\alpha)}(uv) = \sum_{\beta+\gamma=c} (\partial/\partial X)^{(\beta)}(u)(\partial/\partial X)^{(\gamma)}(v).$$

This is essentially the familiar Leibniz rule from Calculus.

2.1. Inversion Formula. Let φ be an automorphism of k[[X]] given by $X_i \rightarrow f_i$ $(1 \le i \le n)$. If $\alpha = (\alpha_1, ..., \alpha_n)$ is a multi-index of non-negative integers, define $d^{(n)} = \varphi(\partial/\partial X)^{(\alpha)}\varphi^{-1}$. Then φ^{-1} is given by

$$\varphi^{-1}(u) = \sum_{\alpha} (X - f)^{\alpha} \alpha^{\varepsilon(\alpha_{i+\alpha})}$$
(2.2)

where $(X-f)^{\alpha} = (X_1 - f_1)^{\alpha_1} \cdots (X_n - f_n)^{\alpha_n}$.

Proof. Define $\psi(u)$ to be the right-hand side of (2.2). Then ψ is a well-defined k-linear map $k[[X]] \rightarrow k[[X]]$. Since the $(\partial/\partial X)^{(\alpha)}$ are higher derivations of k[[X]], so are the $d^{(\alpha)}$. This implies that ψ is a k-algebra endomorphism of k[[X]]. For $1 \le i \le n$ we have

$$\psi\varphi(X_i) = \sum_{\alpha} (X - f)^{\alpha} \varphi(\partial/\partial X)^{(\alpha)}(X_i) = f_i + (X_i - f_i) = X_i$$

Hence $\psi \varphi = 1$. \Box

Now suppose that φ is an endomorphism of k[X] (resp. of k[[X]]) with $Jac(\varphi)$ invertible. We define derivations d_1, \ldots, d_n of k[X] (resp. of k[[X]]) by the matrix equation

$$\begin{pmatrix} d_1 \\ \vdots \\ d_n \end{pmatrix} = \operatorname{Jac}(\varphi)^{-1} \begin{pmatrix} \partial/\partial X_1 \\ \vdots \\ \partial/\partial X_n \end{pmatrix}.$$
 (2.3)

2.4. Proposition. (i) d_1, \ldots, d_n are uniquely characterized by the property that d_i is equal to $\partial/\partial f_i$ on k[f] (resp. on k[[f]]) for $1 \le i \le n$.

- (ii) $d_1, ..., d_n$ commute.
- (iii) If φ is an automorphism, then $d_i = \varphi(\partial/\partial X_i)\varphi^{-1}$.

Proof. As a module, the set of derivations of k[X] (resp. of k[[X]]) is generated by $\partial/\partial X_1, \ldots, \partial/\partial X_n$. Since Jac(φ) is invertible, it is also generated by d_1, \ldots, d_n . It is clear from the definition that $d_i f_j = \delta_{ij}$. Hence d_i restricts to $\partial/\partial f_i$. If d is a derivation such that $df_1 = \cdots = df_n = 0$, then writing $d = \sum a_i d_i$ we see that d = 0. We use this to prove the remaining claims. If d_i, d'_i both restrict to $\partial/\partial f_i$ then $d = d_i - d'_i = 0$. Given *i* and *j*, the commutator $d = [d_i, d_j] = d_i d_j - d_j d_i = 0$. Finally, if φ is an automorphism then $d = d_i - \varphi(\partial/\partial X_i)\varphi^{-1} = 0$. \Box

We conclude this section with:

2.5. Characteristic Zero Inversion Theorem. Assume that k contains the field \mathbb{Q} of rational numbers. Let φ be an endomorphism of k[[X]] with Jac(φ) invertible. Then φ is an automorphism of k[[X]] and φ^{-1} is given by the formula (2.2), where

$$d^{(\alpha)} = \varphi(\partial/\partial X)^{(\alpha)}\varphi^{-1} = \frac{1}{\alpha!} d^{\alpha} = \frac{1}{\alpha_1! \cdots \alpha_n!} d_1^{\alpha_1} \cdots d_n^{\alpha_n}$$

Proof. Let $d^{(\alpha)} = (1/\alpha!)d^{\alpha}$. Then the $d^{(\alpha)}$ are higher derivations of k[[X]]. Define

 $\psi(u)$ to be the right-hand side of (2.2). Then ψ is an endomorphism of k[[X]], and using 2.4(i), (ii) we see that $\psi \varphi = 1$. In order to show that $\varphi \psi = 1$ it suffices to show that $\varphi \psi \equiv 1 \mod ((X))^m$ for $m \ge 0$, where ((X)) is the ideal generated by X_1, \ldots, X_n . This is clear since $\psi \varphi \equiv 1 \mod ((X))^m$ and $k[[X]]/((X))^m$ is a finitely generated free k-module. Finally, $d^{(\alpha)} = \varphi(\partial/\partial X)^{(\alpha)} \varphi^{-1}$ by 2.4(iii). \Box

3. Local nilpotence and local finiteness

This section contains a criterion for the invertibility of an endomorphism φ of k[X] in characteristic zero.

3.1. Definition. Let k be a commutative ring and let d be a derivation of k[X]. Then Ker(d), Nil(d), Fin(d) $\subseteq k[X]$ and defined by

(i) $z \in \text{Ker}(d)$ iff d(z) = 0.

(ii) $z \in Nil(d)$ iff there is an integer $m \ge 0$ such that $d^m(z) = 0$.

(iii) $z \in Fin(d)$ iff there is a finitely generated k-module $M \subseteq k[X]$ such that $z \in M$ and M is d-invariant (i.e., $dM \subseteq M$).

We say that d is locally nilpotent if Nil(d) = k[X] and locally finite if Fin(d) = k[X].

3.2. Lemma. $\operatorname{Ker}(d) \subseteq \operatorname{Nil}(d) \subseteq \operatorname{Fin}(d)$ are subalgebras of k[X].

Proof. The inclusions are obvious. The formula

$$d^{m}(z_{1}z_{2}) = \sum_{i+j=m} \binom{m}{i} d^{i}(z_{1}) d^{j}(z_{2})$$

implies that Ker(d) and Nil(d) are subalgebras. If M_1 , M_2 are finitely generated and d-invariant, then so are $M_1 + M_2$ and $M_1M_2 = \{\sum az_1 z_2 | a \in k, z_1 \in M_1, z_2 \in M_2\}$. Hence Fin(d) is a subalgebra. \Box

3.3. Theorem. Suppose that k contains the field **Q** of rational numbers, and let φ be an endomorphism of k[X] with $Jac(\varphi)$ invertible. Define derivations d_1, \ldots, d_n of k[X] by (2.3). Then the following are equivalent:

- (i) φ is invertible.
- (ii) d_1, \ldots, d_n are locally nilpotent.
- (iii) d_1, \ldots, d_n are locally finite.

Proof. Replacing φ by $\varphi\tau$ for a suitable translation $\tau \in \operatorname{Aut}_k k[X]$ we can assume that φ preserves the origin. By 2.5, φ is an automorphism of k[[X]]. If $\varphi \in \operatorname{Aut}_k k[X]$ then $d_i^m = \varphi(\partial/\partial X_i)^m \varphi^{-1}$ (2.4(iii)) shows that d_i is locally nilpotent. Conversely, if the d_i are locally nilpotent then φ^{-1} takes k[X] to k[X] by (2.2). Hence (i) and (ii) are equivalent.

It is clear that (ii) implies (iii). The rest of this section is devoted to the proof of the converse. Assume (iii). By 3.2, a derivation d is locally finite if $X_1, \ldots, X_n \in$ Fin(d). Using this it is easy to reduce to the case where k is a finitely generated **Q**-algebra. Let k have nilradical N, and write $k/N = k_1 \times \cdots \times k_r$ where the k_i are domains. Then for each i, Jac(φ) is invertible over k_i and d_1, \ldots, d_n are locally finite over k_i .

3.4. Lemma. If φ is invertible over each k_i , then φ is invertible over k.

Proof. If $k_i[f] = k_i[X]$ for each *i*, then N(k[X]/k[f]) = k[X]/k[f]. Since N is nilpotent, k[X] = k[f].

Hence we can assume that k is a domain. By enlarging k we can further reduce to the case where k is an algebraically closed field of characteristic 0.

3.5. Lemma. Let k be a field of characteristic 0. If d is a derivation of k[X], $z \in k[X]$, and $dz = \lambda z$ for some $0 \neq \lambda \in \text{Ker}(d)$ then z is transcendental over Nil(d).

Proof. Assume the contrary. Let $a_r z^r + \dots + a_0 = 0$ be an algebraic equation with $a_r, \dots, a_0 \in Nil(d)$ and r minimal. Applying d to this equation gives

 $(da_r + r\lambda a_r)z^r + \cdots + (da_1 + \lambda a_1)z + da_0 = 0.$

Since $a_0 \in Nil(d)$, applying d repeatedly we can assume that $a_0 \neq 0$, $da_0 = 0$. Then also $da_i + i\lambda a_i = 0$ by the minimality of r. Since $a_r \in Nil(d)$, there is m such that $0 = d^m a_r = (-1)^m r^m \lambda^m a_r$, a contradiction.

We now complete the proof of 3.3 by showing that d_1, \ldots, d_n are locally nilpotent. Let $d = d_i$. Suppose M is a finite-dimensional k-vector space such that $dM \subseteq M$. By linear algebra, in order to show that the linear map $d \mid M$ on M is nilpotent, it suffices to show that the eigenvalues of $d \mid M$ are zero. Suppose $z \in M$ is an eigenvector of $d \mid M$, say $dz = \lambda z$ where $\lambda \in k$. Since k[X] is algebraic over k[f] and $k[f] \subseteq Nil(d)$, z is algebraic over Nil(d). Then by (3.5), $\lambda = 0$. \Box

The equivalence of (i) and (ii) in 3.3 also follows directly from the following fact: If d is a derivation in characteristic zero and d(z) = 1, then Nil(d) = Ker(d)[z]. This fact has been noted by several people, see e.g. [2] and [3].

References

- H. Bass, E.H. Connell and D. Wright, The Jacobian Conjecture: Reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (1982) 287-330.
- [2] M. Bazar, Polynemial maps with constant Jacobian, Israel J. Math. 32 (1979) 97-106.
- [3] D. Wright, On the Jacobian Conjecture, Illinois J. Math. 25 (1981) 423-440.